

Searching for ZERO TRUST

Cloud Security Alliance

107,000+

100+

INDIVIDUAL MEMBERS

CHAPTERS

400+
CORPORATE MEMBERS

35+

GROUPS

Strategic partnerships with governments, research institutions, professional associations and industry

CSA research is FREE!

2009

CSA FOUNDED

OUR COMMUNITY

SEATTLE/BELLINGHAM, WA // US HEADQUARTERS

SINGAPORE // ASIA PACIFIC HEADQUARTERS

ZT: What is it?

Not a technology

ZT Definition

There's no established definition, but a set of high level principles to guide a risk-based approach to cyber resources management in distributed organizations, with distributed supply chain and with distributed services.

It's a philosophy

The definition CSA is using

Zero Trust is a cybersecurity strategy premised on the idea that no user or asset is to be implicitly trusted. It assumes that a breach has already occurred or will occur, and therefore, a user should not be granted access to sensitive information by a single verification done at the enterprise perimeter. Instead, each user, device, application, and transaction must be continually verified.

THE PRESIDENT'S NATIONAL SECURITY TELECOMMUNICATIONS ADVISORY COMMITTEE

DRAFT REPORT TO THE PRESIDENT

Zero Trust and Trusted Identity Management

Complexity

Evidence Based Trust

Timestamp	Source IP Address	Destination IP Address	Content	Vulnerability
08\13-12:26:10	129.174.124. 122:4444	129.174.124. 184:4040	SHELLCODE x86 inc ebx NOOP	CVE-2009-1918
08\13-12:27:37	129.174.124. 122:4444	129.174.124. 184:4040	SHELLCODE x86 inc ebx NOOP	CVE-2009-1918
08\13-14:37:27	129.174.124. 122:1715	129.174.124. 53:80	SQL Injection Attempt	CWE89
08\13-16:19:56	129.174.124. 122:49381	129.174.124. 137:8080	Cross-Site Scripting	XSS
08\13-14:37:29	129.174.124. 53	129.174.124. 35	name='Alice' AND password='alice' OR '1'='1'	CWE89
	,			

Memory Lane

ZT Timeline

ZT Principles

- Design the system from the inside out, starting from the surface you want to protect.
- Trust no one and nothing, until validated and verified (make no assumptions, assume hostile environment, presume breach).
- Enforce the need to know and least privilege access principles.
- Define/Change access requirements and policies based on risk and context.
- Monitor (continuously) what's happening.

Pillars and Maturity Model

Identity	Device	Network	Application Workload	Data
Password or multifactor authentication Limited risk assessment	Limited visibility into compliance Simple inventory	Large macro- segmentation Minimal internal or external traffic encryption	Access based or local authorization Minimal integration with workflow Some cloud accessibility	Not well inventoried Static control Unencrypted
MFA Some identity federation with cloud and on-premises systems	Compliance enforcement employed Data access depends on device posture on first access	Defined by ingress/egress micro-perimeters Basic analytics	Access based or centralized authentication Basic integration into application workflow	Least privilege controls Data stored in cloud oremote environments are encrypted at rest
Continuous validation Real time machine learning analysis	Constant device security monitor and validation Data access depends on real-time risk analysis	Fully distributed ingress/egress microperimeters Machine learning-based threat protection All traffic is encrypted	Access is authorized continuously Strong integration into application workflow	Dynamic support All data is encrypted

Visibility and Analytics

Automation and Orchestration

Governance

Figure 1.5.1: CISA High-Level Zero Trust Maturity Model¹⁸

Objectives and Benefits

ZTA Objectives and Benefits

- Reduce Risk
- Improve Organizational Accountability
- Establishing a Protective Framework
- Simplify User Experience
- Reduce Attack Surface
- Reduce Complexity

- Enforce the Least Privilege and Need to Know Principles
- Improve Security Posture & Resilience
- Improve Incident Containment & Management
- Improve Compliance Management

Logic and Models

Logical Components / NIST

Implementation Models

Conceptual Model of Service-initiated ZTNA Beginner Application Connect to Provider Application Connect to Provider Connect t

Implementation Models: Software Defined Perimeter

Strategy & Planning

Strategy and Planning

- It is primarily about <u>risk management</u>
- Understand your <u>needs</u>, your current state and define the <u>goals (use cases)</u>
- Determine which <u>assets</u> (data/services/etc.) are involved / what do you need to protect?
- Determine which <u>entities</u> (humans and non) are involved
- Define/Refine the <u>IAM</u> approach

- Select the service <u>architecture</u> / What are the <u>data</u> <u>flows</u>?
- Select the ZT <u>implementation model</u> and approach
- Define your policies
- Select the **technology**
- Monitor and review based on the risk and context

BE AGILE!

Collective knowledge guiding zero trust implementation

Contact

Links to the CSA's work on ZT and SDP can be found in the Attachments section.

Research

https://cloudsecurityalliance.org/research/

CSA STAR

https://cloudsecurityalliance.org/star/#_overview

Cloud Controls Matrix

https://cloudsecurityalliance.org/workinggroups/cloud-controls-matrix/#_downloads

Training

https://cloudsecurityalliance.org/education/

Membership

https://cloudsecurityalliance.org/membership/

CSA security alliance®

Daniele Catteddu, Chief Technology Officer, CSA

dcatteddu@cloudsecurityalliance.org

ZT@cloudsecurityalliance.org

Cloudsecurityalliance.org/ZT

